Jumat, 06 Juli 2012

Sifat Koligatif

Sifat Koligatif Larutan

Ditulis oleh Ratna dkk pada 16-04-2009

Gambaran umum sifat koligatif
Gambaran umum sifat koligatif
Sifat  koligatif  larutan  adalah  sifat  larutan  yang  tidak tergantung pada macamnya zat terlarut tetapi semata-mata hanya ditentukan oleh banyaknya zat terlarut (konsentrasi zat terlarut).
Apabila suatu pelarut ditambah dengan sedikit zat terlarut (Gambar 6.2), maka akan didapat suatu larutan yang mengalami:
  1. Penurunan tekanan uap jenuh
  2. Kenaikan titik didih
  3. Penurunan titik beku
  4. Tekanan osmosis
Banyaknya partikel dalam larutan ditentukan oleh konsentrasi larutan dan sifat Larutan itu sendiri. Jumlah partikel dalam larutan non elektrolit tidak sama dengan jumlah partikel dalam larutan elektrolit, walaupun konsentrasi keduanya sama. Hal ini dikarenakan larutan elektrolit terurai menjadi ion-ionnya, sedangkan larutan non elektrolit tidak terurai menjadi ion-ion. Dengan demikian sifat koligatif larutan dibedakan atas sifat koligatif larutan non elektrolit dan sifat koligatif larutan elektrolit.

Penurunan Tekanan Uap Jenuh

Pada  setiap  suhu,  zat  cair  selalu  mempunyai  tekanan tertentu. Tekanan ini adalah tekanan uap jenuhnya pada suhu tertentu. Penambahan suatu zat ke dalam zat cair menyebabkan penurunan tekanan uapnya. Hal ini disebabkan karena zat terlarut itu mengurangi bagian atau fraksi dari pelarut, sehingga kecepatan penguapan berkurang.

Gambaran penurunan tekanan uap
Gambaran penurunan tekanan uap
Menurut Roult :
p = po . XB
keterangan:
p     : tekanan uap jenuh larutan
po  : tekanan uap jenuh pelarut murni
XB  : fraksi mol pelarut
Karena XA + XB = 1, maka persamaan di atas dapat diperluas menjadi :
P = Po (1 – XA)
P = Po – Po . XA
Po – P = Po . XA
Sehingga :
ΔP = po . XA
keterangan:
ΔP   : penuruman tekanan uap jenuh pelarut
po    : tekanan uap pelarut murni
XA   : fraksi mol zat terlarut
Contoh :
Hitunglah penurunan tekanan uap jenuh air, bila 45 gram glukosa (Mr = 180) dilarutkan dalam 90 gram air ! Diketahui tekanan uap jenuh air murni pada 20oC adalah 18 mmHg.
rm

Kenaikan Titik Didih

Adanya penurunan tekanan uap jenuh mengakibatkan titik didih larutan lebih tinggi dari titik didih pelarut murni. Untuk larutan non elektrolit kenaikan titik didih dinyatakan dengan:
ΔTb = m . Kb
keterangan:
ΔTb = kenaikan titik didih (oC)
m      = molalitas larutan
Kb = tetapan kenaikan titik didihmolal
rm19
(W menyatakan massa zat terlarut), maka kenaikan titik didih larutan dapat dinayatakan sebagai:
rm210
Apabila pelarutnya air dan tekanan udara 1 atm, maka titik didih larutan dinyatakan sebagai :
Tb = (100 + ΔTb) oC

Penurunan Titik Beku

Untuk penurunan titik beku persamaannya dinyatakan sebagai:
rm37
ΔT= penurunan titik beku
m     = molalitas larutan
Kf     = tetapan penurunan titik beku molal
W     = massa zat terlarut
Mr   = massa molekul relatif zat terlarut
p      = massa pelarut
Apabila pelarutnya air dan tekanan udara 1 atm, maka titik beku larutannya dinyatakan sebagai:
Tf = (O – ΔTf)oC

Tekanan Osmosis

Tekanan osmosis adalah tekanan yang diberikan pada larutan yang dapat menghentikan perpindahan molekul-molekul pelarut ke dalam larutan melalui membran semi permeabel (proses osmosis) seperti ditunjukkan pada.
Menurut Van’t hoff tekanan osmosis mengikuti hukum gas ideal:
PV = nRT
Karena tekanan osmosis = Π , maka :
rm48
π° = tekanan osmosis (atmosfir)
C   = konsentrasi larutan (M)
R   = tetapan gas universal.  = 0,082 L.atm/mol K
T   = suhu mutlak (K)

Tekanan osmosis
Tekanan osmosis
  • Larutan yang mempunyai tekanan osmosis lebih rendah dari yang lain disebut larutan Hipotonis.
  • Larutan yang mempunyai tekanan lebih tinggi dari yang lain disebut larutan Hipertonis.
  • Larutan yang mempunyai tekanan osmosis sama disebut Isotonis.
Seperti yang telah dijelaskan sebelumnya bahwa larutan elektrolit  di  dalam  pelarutnya  mempunyai  kemampuan  untuk mengion. Hal ini mengakibatkan larutan elektrolit mempunyai jumlah partikel yang lebih banyak daripada larutan non elektrolit pada konsentrasi yang sama.
Contoh :
Larutan 0.5 molal glukosa dibandingkan dengan iarutan 0.5 molal garam dapur.
  • Untuk larutan glukosa dalam air jumlah partikel (konsentrasinya) tetap, yaitu 0.5 molal.
  • Untuk larutan garam dapur: NaCl(aq) → Na+(aq) + Cl-(aq) karena terurai menjadi 2 ion, maka konsentrasi partikelnya menjadi 2 kali semula = 1.0 molal.
Yang menjadi ukuran langsung dari keadaan (kemampuannya) untuk mengion adalah derajat ionisasi. Besarnya derajat ionisasi ini dinyatakan sebagai :
α° = jumlah mol zat yang terionisasi/jumlah mol zat mula-mula
Untuk larutan elektrolit kuat, harga derajat ionisasinya mendekati 1, sedangkan untuk elektrolit lemah, harganya berada di antara 0 dan 1 (0 < α < 1). Atas dasar kemampuan ini, maka larutan elektrolit mempunyai pengembangan di dalam perumusan sifat koligatifnya.
  • Untuk Kenaikan Titik Didih dinyatakan sebagai :
rm54
n menyatakan jumlah ion dari larutan elektrolitnya.
  • Untuk Penurunan Titik Beku dinyatakan sebagai :
rm64
  • Untuk Tekanan Osmosis dinyatakan sebagai :
π°  = C R T [1+ α(n-1)]
Contoh :
Hitunglah kenaikan titik didih dan penurunan titik beku dari larutan5.85 gram garam dapur (Mr = 58.5) dalam 250 gram air ! (untuk air, Kb= 0.52 dan Kf= 1.86)
Jawab :
Larutan garam dapur,
rm73
Catatan:
Jika di dalam soal tidak diberi keterangan mengenai harga derajat ionisasi, tetapi kita mengetahui bahwa larutannya tergolong elektrolit kuat, maka harga derajat ionisasinya dianggap 1.

Kamis, 05 Juli 2012

rpp Struktur atom 2

RENCANA  PELAKSANAAN  PEMBELAJARAN
STRUKTUR ATOM - 2
(KONFIGURASI ELEKTRON DAN SISTEM PERIODIK UNSUR)

Nama Sekolah           :  SMA
Mata Pelajaran          :  Kimia
Kelas / Semester        :  XI IPA / 1
Standar Kompetensi :  1.      Memahami struktur atom untuk meramalkan  sifat-sifat                    periodik unsur, struktur molekul, dan sifat sifat senyawa.
Kompetensi dasar     :  1.1.   Menjelaskan teori atom Bohr dan mekanika kuantum untuk             menuliskan konfigurasi elektron dan diagram orbital serta                       menentukan letak unsur dalam tabel periodik.

Indikator Pencapaian Kompetensi: 
1.      Menggunakan azas larangan Pauli, prisip aufbau, dan aturan Hund untuk menuliskan konfigurasi elektron dan diagram orbital.
2.      Menghubungkan konfigurasi elektron  suatu unsur dengan letaknya dalam tabel periodik.

Tujuan:
     Siswa dapat,
1.      Menuliskan konfigurasi elektron menurut teori atom mekanika kuantum.
2.      Menuliskan diagram orbital
3.      Menentukan letak unsur dalam sistem periodik berdasarkan konfigurasi elektronnya atau sebaliknya.
  Karakter siswa yang diharapkan  : 
§   Jujur, Kerja keras, Toleransi, Rasa ingin tahu, Komunikatif, Menghargai prestasi, Tanggung Jawab, Peduli lingkungan
  Kewirausahaan / Ekonomi Kreatif   : 
§   Percaya diri, Berorientasi tugas dan hasil.

Materi Ajar: 
Konfigurasi elektron menurut teori atom mekanika kuantum.
Hubungan konfigurasi elektron dengan sistem periodik.

Metode pendekatan:
  • Penyampaian informasi
  • Diskusi
  • Penugasan

Alokasi Waktu
2  Jam pelajaran (1 x pertemuan)
Strategi Pembelajaran

Tatap Muka
Terstruktur
Mandiri
·        Memahami struktur atom dan meramalkan sifat-sifat periodik unsur, struktur molekul dan dan sifat-sifat senyawa
·        Berlatih menentukan penulisan konfigurasi elektron dan letak unsur dalam tabel periodik.
·        Siswa dapat Menjelaskan teori atom bohr dan mekanika kuantum untuk menuliskan konfigurasi elektron dan diagram orbital serta menentukan letak unsur dalam tabel periodik.


Skenario Pembelajaran
Kegiatan awal
o   Salam pembuka
o   Memeriksa PR, mencatat siswa yang tidak mengerjakan.
Kegiatan Inti
Eksplorasi
Dalam kegiatan eksplorasi, guru:
o   Membahas konfigurasi elektron sesuai dengan LKS 1.5. (nilai yang ditanamkan: Jujur, Kerja keras, Toleransi, Rasa ingin tahu, Komunikatif, Menghargai prestasi, Tanggung Jawab, Peduli lingkungan.);
Elaborasi
Dalam kegiatan eksplorasi, guru:
o   Membahas hubungan konfigurasi elektron dengan sistem periodik sesuai dengan LKS 1.6. (nilai yang ditanamkan: Jujur, Kerja keras, Toleransi, Rasa ingin tahu, Komunikatif, Menghargai prestasi, Tanggung Jawab, Peduli lingkungan.);
Konfirmasi
Dalam kegiatan konfirmasi, Siswa:
o   Menyimpulkan tentang hal-hal yang belum diketahui (nilai yang ditanamkan: Jujur, Kerja keras, Toleransi, Rasa ingin tahu, Komunikatif, Menghargai prestasi.);
o   Menjelaskan tentang hal-hal yang belum diketahui. (nilai yang ditanamkan: Menghargai prestasi, Tanggung Jawab, Peduli lingkungan)
Kegiatan Akhir
o   Menyimpulkan aturan-aturan penulisan konfigurasi elektron. (nilai yang ditanamkan: Jujur, Kerja keras, Toleransi, Rasa ingin tahu, Komunikatif, Menghargai prestasi, Tanggung Jawab, Peduli lingkungan.);
o   Menyimpulkan hubungan konfigurasi elektron dengan sistem periodik. (nilai yang ditanamkan: Jujur, Kerja keras, Toleransi, Rasa ingin tahu, Komunikatif, Menghargai prestasi, Tanggung Jawab, Peduli lingkungan.);
o   Memberi tugas untuk pertemuan berikutnya (Mempelajari LKS 1.7 dan 1.8). (nilai yang ditanamkan: Jujur, Kerja keras, Toleransi, Rasa ingin tahu, Komunikatif, Menghargai prestasi, Tanggung Jawab, Peduli lingkungan.);

Alat / Bahan / Sumber Belajar : 
      Buku Kimia; LKS, multimedia.

Penilaian: PPK
          

                                                                                                 Surabaya,     Juli 2011
Mengetahui
Kepala SMA                                                                           Guru Mata Pelajaran



_____________________                                                       _______________________
NIP.                                                                                         NIP.


Sabtu, 28 Januari 2012

SMAN 22 Surabaya

Teori Asam Basa


A. MENURUT ARRHENIUS

Menurut teori Arrhenius, zat yang dalam air menghasilkan ion H + disebut asam danbasa adalah zat yang dalam air terionisasi menghasilkan ion OH - .
HCl --> H + + Cl -
NaOH --> Na + + OH -
Meskipun teori Arrhenius benar, pengajuan desertasinya mengalami hambatan berat karena profesornya tidak tertarik padanya. Desertasinya dimulai tahun 1880, diajukan pada 1883, meskipun diluluskan teorinya tidak benar. Setelah mendapat bantuan dari Van’ Hoff dan Ostwald pada tahun 1887 diterbitkan karangannya mengenai asam basa. Akhirnya dunia mengakui teori Arrhenius pada tahun 1903 dengan hadiah nobel untuk ilmu pengetahuan.
Sampai sekarang teori Arrhenius masih tetap berguna meskipun hal tersebut merupakan model paling sederhana. Asam dikatakan kuat atau lemah berdasarkan daya hantar listrik molar. Larutan dapat menghantarkan arus listrik kalau mengandung ion, jadi semakin banyak asam yang terionisasi berarti makin kuat asamnya. Asam kuat berupa elektrolit kuat dan asam lemah merupakan elektrolit lemah. Teori Arrhenius memang perlu perbaikan sebab dalam lenyataan pada zaman modern diperlukan penjelasanyang lebih bisa diterima secara logik dan berlaku secara umum. Sifat larutan amoniak diterangkan oleh teori Arrhenius sebagai berikut:
NH 4 OH --> NH 4 + + OH -
Jadi menurut Svante August Arrhenius (1884) asam adalah spesi yang mengandung H + dan basa adalah spesi yang mengandung OH -, dengan asumsi bahwa pelarut tidak berpengaruh terhadap sifat asam dan basa.
Sehingga dapat disimpulkan bahwa:

Asam ialah senyawa yang dalam larutannya dapat menghasilkan ion H + .
Basa ialah senyawa yang dalam larutannya dapat menghasilkan ion OH - .
Contoh:
1) HCl(aq) --> H + (aq) + Cl - (aq)
2) NaOH(aq) --> Na + (aq) + OH - (aq)

























B. MENURUT BRONSTED-LOWRY
Asam ialah proton donor, sedangkan basa adalah proton akseptor.

Teori asam basa dari Arrhenius ternyata tidak dapat berlaku untuk semua pelarut, karena khusus untuk pelarut air. Begitu juga tidak sesuai dengan reaksi penggaraman karena tidak semua garam bersifat netral, tetapi ada juga yang bersifat asam dan ada yang bersifat basa.
Konsep asam basa yang lebih umum diajukan oleh Johannes Bronsted, basa adalah zat yang dapat menerima proton. Ionisasi asam klorida dalam air ditinjau sebagai perpindahan proton dari asam ke basa.
HCl + H 2 O --> H 3 O + + Cl -
Demikian pula reaksi antara asam klorida dengan amoniak, melibatkan perpindahan proton dari HCl ke NH 3 .
HCl + NH 3 NH 4 + + Cl -
Ionisasi asam lemah dapat digambarkan dengan cara yang sama.
HOAc + H 2 O H 3 O + + OAc -
Pada tahun 1923 seorang ahli kimia Inggris bernama T.M. Lowry juga mengajukan hal yang sama dengan Bronsted sehingga teori asam basanya disebut Bronsted-Lowry. Perlu diperhatikan disini bahwa H + dari asam bergabung dengan molekul air membentuk ion poliatomik H 3 O + disebut ion Hidronium.
Reaksi umum yang terjadi bila asam dilarutkan ke dalam air adalah:
HA + H 2 O H 3 O + + A -
asam basa asam konjugasi basa konjugasi
Penyajian ini menampilkan hebatnya peranan molekul air yang polar dalam menarik proton dari asam.
Perhatikanlah bahwa asam konjugasi terbentuk kalau proton masih tinggal setelah asam kehilangan satu proton. Keduanya merupakan pasangan asam basa konjugasi yang terdi dari dua zat yang berhubungan satu sama lain karena pemberian proton atau penerimaan proton. Namun demikian disosiasi asam basa masih digunakan secara Arrhenius, tetapi arti yang sebenarnya harus kita fahami.
Johannes N. Bronsted dan Thomas M. Lowry membuktikan bahwa tidak semua asam mengandung ion H + dan tidak semua basa mengandung ion OH - .
Bronsted – Lowry mengemukakan teori bahwa asam adalah spesi yang memberi H + ( donor proton ) dan basa adalah spesi yang menerima H + (akseptor proton). Jika suatu asam memberi sebuah H + kepada molekul basa, maka sisanya akan menjadi basa konjugasi dari asam semula. Begitu juga bila basa menerima H + maka sisanya adalah asam konjugasi dari basa semula.
Teori Bronsted – Lowry jelas menunjukkan adanya ion Hidronium (H 3 O + ) secara nyata.
Contoh:
HF + H 2 O ⇄ H 3 O + + F -
Asam basa asa m konjugasi basa konjugasi

HF merupakan pasangan dari F - dan H 2 O merupakan pasangan dari H 3 O + .
Air mempunyai sifat ampiprotik karena dapat sebagai basa dan dapat sebagai asam.
HCl + H 2 O --> H 3 O + + Cl -
Asam Basa
NH 3 + H 2 O ⇄ NH 4 + + OH -
Basa Asam
Manfaat dari teori asam basa menurut Bronsted – Lowry adalah sebagai berikut:
1. Aplikasinya tidak terbatas pada pelarut air, melainkan untuk semua pelarut yang mengandunh atom Hidrogen dan bahkan tanpa pelarut.
2. Asam dan basa tidak hanya berwujud molekul, tetapi juga dapat berupa anion dan kation.
Contoh lain:
1) HAc(aq) + H 2 O(l) -->
H 3 O+(aq) + Ac - (aq)
asam-1 basa-2 asam-2 basa-1

HAc dengan Ac - merupakan pasangan asam-basa konyugasi.
H 3 O+ dengan H 2 O merupakan pasangan asam-basa konyugasi.

2) H 2 O(l) + NH 3 (aq) --> NH 4 + (aq) + OH - (aq)
asam-1 basa-2 asam-2 basa-1

H 2 O dengan OH - merupakan pasangan asam-basa konyugasi.
NH 4 + dengan NH 3 merupakan pasangan asam-basa konyugasi.

Pada contoh di atas terlihat bahwa air dapat bersifat sebagai asam (proton donor) dan sebagai basa (proton akseptor). Zat atau ion atau spesi seperti ini bersifat ampiprotik (amfoter).
Penulisan Asam Basa Bronsted Lowry
C. Menurut G. N. Lewis
Selain dua teori mengenai asam basa seperti telah diterangkan diatas, masih ada teori yang umum, yaitu teori asam basa yang diajukan oleh Gilbert Newton Lewis ( 1875-1946 ) pada awal tahun 1920. Lewis lebih menekankan pada perpindahan elektron bukan pada perpindahan proton, sehingga ia mendefinisikan : asam penerima pasangan elektron dan basa adalah donor pasangan elekton. Nampak disini bahwa asam Bronsted merupakan asam Lewis dan begitu juga basanya. Perhatikan reaksi berikut:
Reaksi antara proton dengan molekul amoniak secara Bronsted dapat diganti dengan cara Lewis. Untuk reaksi-reaksi lainpun dapat diganti dengan reaksi Lewis, misalnya reaksi antara proton dan ion Hidroksida:
Ternyata teori Lewis dapat lebih luas meliput reaksi-reaksi yang tidak ternasuk asam basa Bronsted-Lowry, termasuk kimia Organik misalnya:
CH 3 + + C 6 H 6 C 6 H 6 CH 3 +


Asam ialah akseptor pasangan elektron, sedangkan basa adalah Donor pasangan elektron. Contoh:

Asam Lewis

Asam-Basa Lewis

Jumat, 27 Januari 2012

Teori Asam Basa

Materi

Teori Asam Basa


A. MENURUT ARRHENIUS
Menurut teori Arrhenius, zat yang dalam air menghasilkan ion H + disebut asam danbasa adalah zat yang dalam air terionisasi menghasilkan ion OH - .
HCl --> H + + Cl -
NaOH --> Na + + OH -
Meskipun teori Arrhenius benar, pengajuan desertasinya mengalami hambatan berat karena profesornya tidak tertarik padanya. Desertasinya dimulai tahun 1880, diajukan pada 1883, meskipun diluluskan teorinya tidak benar. Setelah mendapat bantuan dari Van’ Hoff dan Ostwald pada tahun 1887 diterbitkan karangannya mengenai asam basa. Akhirnya dunia mengakui teori Arrhenius pada tahun 1903 dengan hadiah nobel untuk ilmu pengetahuan.
Sampai sekarang teori Arrhenius masih tetap berguna meskipun hal tersebut merupakan model paling sederhana. Asam dikatakan kuat atau lemah berdasarkan daya hantar listrik molar. Larutan dapat menghantarkan arus listrik kalau mengandung ion, jadi semakin banyak asam yang terionisasi berarti makin kuat asamnya. Asam kuat berupa elektrolit kuat dan asam lemah merupakan elektrolit lemah. Teori Arrhenius memang perlu perbaikan sebab dalam lenyataan pada zaman modern diperlukan penjelasanyang lebih bisa diterima secara logik dan berlaku secara umum. Sifat larutan amoniak diterangkan oleh teori Arrhenius sebagai berikut:
NH 4 OH --> NH 4 + + OH -
Jadi menurut Svante August Arrhenius (1884) asam adalah spesi yang mengandung H + dan basa adalah spesi yang mengandung OH -, dengan asumsi bahwa pelarut tidak berpengaruh terhadap sifat asam dan basa.
Sehingga dapat disimpulkan bahwa:

Asam ialah senyawa yang dalam larutannya dapat menghasilkan ion H + .
Basa ialah senyawa yang dalam larutannya dapat menghasilkan ion OH - .
Contoh:1) HCl(aq) --> H + (aq) + Cl - (aq)
2) NaOH(aq) --> Na + (aq) + OH - (aq)























B. MENURUT BRONSTED-LOWRYAsam ialah proton donor, sedangkan basa adalah proton akseptor.
Teori asam basa dari Arrhenius ternyata tidak dapat berlaku untuk semua pelarut, karena khusus untuk pelarut air. Begitu juga tidak sesuai dengan reaksi penggaraman karena tidak semua garam bersifat netral, tetapi ada juga yang bersifat asam dan ada yang bersifat basa.
Konsep asam basa yang lebih umum diajukan oleh Johannes Bronsted, basa adalah zat yang dapat menerima proton. Ionisasi asam klorida dalam air ditinjau sebagai perpindahan proton dari asam ke basa.
HCl + H 2 O --> H 3 O + + Cl -
Demikian pula reaksi antara asam klorida dengan amoniak, melibatkan perpindahan proton dari HCl ke NH 3 .
HCl + NH 3 NH 4 + + Cl - Ionisasi asam lemah dapat digambarkan dengan cara yang sama.
HOAc + H 2 OH 3 O + + OAc -
Pada tahun 1923 seorang ahli kimia Inggris bernama T.M. Lowry juga mengajukan hal yang sama dengan Bronsted sehingga teori asam basanya disebut Bronsted-Lowry. Perlu diperhatikan disini bahwa H + dari asam bergabung dengan molekul air membentuk ion poliatomik H 3 O + disebut ion Hidronium.
Reaksi umum yang terjadi bila asam dilarutkan ke dalam air adalah:
HA + H 2 OH 3 O + + A -
asam basa asam konjugasi basa konjugasi
Penyajian ini menampilkan hebatnya peranan molekul air yang polar dalam menarik proton dari asam.
Perhatikanlah bahwa asam konjugasi terbentuk kalau proton masih tinggal setelah asam kehilangan satu proton. Keduanya merupakan pasangan asam basa konjugasi yang terdi dari dua zat yang berhubungan satu sama lain karena pemberian proton atau penerimaan proton. Namun demikian disosiasi asam basa masih digunakan secara Arrhenius, tetapi arti yang sebenarnya harus kita fahami.
Johannes N. Bronsted dan Thomas M. Lowry membuktikan bahwa tidak semua asam mengandung ion H + dan tidak semua basa mengandung ion OH - .
Bronsted – Lowry mengemukakan teori bahwa asam adalah spesi yang memberi H + ( donor proton ) dan basa adalah spesi yang menerima H + (akseptor proton). Jika suatu asam memberi sebuah H + kepada molekul basa, maka sisanya akan menjadi basa konjugasi dari asam semula. Begitu juga bila basa menerima H + maka sisanya adalah asam konjugasi dari basa semula.
Teori Bronsted – Lowry jelas menunjukkan adanya ion Hidronium (H 3 O + ) secara nyata.
Contoh:
HF + H 2 O ⇄ H 3 O + + F -
Asam basa asa m konjugasi basa konjugasi
HF merupakan pasangan dari F - dan H 2 O merupakan pasangan dari H 3 O + .
Air mempunyai sifat ampiprotik karena dapat sebagai basa dan dapat sebagai asam.
HCl + H 2 O --> H 3 O + + Cl -
Asam Basa
NH 3 + H 2 O ⇄ NH 4 + + OH -
Basa Asam
Manfaat dari teori asam basa menurut Bronsted – Lowry adalah sebagai berikut:
1. Aplikasinya tidak terbatas pada pelarut air, melainkan untuk semua pelarut yang mengandunh atom Hidrogen dan bahkan tanpa pelarut.
2. Asam dan basa tidak hanya berwujud molekul, tetapi juga dapat berupa anion dan kation.
Contoh lain:1) HAc(aq) + H 2 O(l) --> H 3 O+(aq) + Ac - (aq)
asam-1 basa-2 asam-2 basa-1

HAc dengan Ac - merupakan pasangan asam-basa konyugasi.
H 3 O+ dengan H 2 O merupakan pasangan asam-basa konyugasi.

2) H 2 O(l) + NH 3 (aq) --> NH 4 + (aq) + OH - (aq)
asam-1 basa-2 asam-2 basa-1

H 2 O dengan OH - merupakan pasangan asam-basa konyugasi.
NH 4 + dengan NH 3 merupakan pasangan asam-basa konyugasi.

Pada contoh di atas terlihat bahwa air dapat bersifat sebagai asam (proton donor) dan sebagai basa (proton akseptor). Zat atau ion atau spesi seperti ini bersifat ampiprotik (amfoter).
Penulisan Asam Basa Bronsted Lowry
C. Menurut G. N. Lewis
Selain dua teori mengenai asam basa seperti telah diterangkan diatas, masih ada teori yang umum, yaitu teori asam basa yang diajukan oleh Gilbert Newton Lewis ( 1875-1946 ) pada awal tahun 1920. Lewis lebih menekankan pada perpindahan elektron bukan pada perpindahan proton, sehingga ia mendefinisikan : asam penerima pasangan elektron dan basa adalah donor pasangan elekton. Nampak disini bahwa asam Bronsted merupakan asam Lewis dan begitu juga basanya. Perhatikan reaksi berikut:
Reaksi antara proton dengan molekul amoniak secara Bronsted dapat diganti dengan cara Lewis. Untuk reaksi-reaksi lainpun dapat diganti dengan reaksi Lewis, misalnya reaksi antara proton dan ion Hidroksida:
Ternyata teori Lewis dapat lebih luas meliput reaksi-reaksi yang tidak ternasuk asam basa Bronsted-Lowry, termasuk kimia Organik misalnya:
CH 3 + + C 6 H 6 C 6 H 6 CH 3 +


Asam ialah akseptor pasangan elektron, sedangkan basa adalah Donor pasangan elektron. Contoh:

Asam Lewis

Asam-Basa Lewis

Senin, 22 Agustus 2011

Bentuk Molekul

Bentuk Molekul

1. Teori Domain Elektron
●Bentuk molekul tergantung pada susunan ruang pasangan elektron ikatan (PEI
dan pasangan elektron bebas (PEB) atom pusat dalam molekul. Dapat dijelaskan
dengan teori tolakan pasangan elektron kulit valensi atau teori VSEPR (Valence
Shell Electron Pair Repultion)
● Molekul kovalen terdapat pasangan-pasangan elektron baik PEI maupun PEB.
Karena pasangan-pasangan elektron mempunyai muatan sejenis, maka tolak-
menolak antarpasangan elektron. Tolakan (PEB - PEB) > tolakan (PEB - PEI) >
tolakan (PEI - PEI)
● Adanya gaya tolak-menolak menyebabkan atom-atom yang berikatan
membentuk struktur ruang yang tertentu dari suatu molekul dengan demikian
bentuk molekul dipengaruhi oleh banyaknya PEI maupun PEB yang dimiliki pada
atom pusat.
● Bentuk molekul ditentukan oleh pasangan elektron ikatannya
Contoh molekul CH4 memiliki 4 PEI


2. Merumuskan Tipe Molekul
1) Atom pusat dilambangkan dengan A
2) Domain elektron ikatan dilambangkan dengan X
3) Domain elektron bebas dinyatakan dengan E

Tabel tipe molekul
Jumlah Pasangan Elektron Ikatan (X)
Jumlah Pasangan Elektron Bebas (E)
Rumus (AXnEm)
Bentuk Molekul
Contoh
2
0
AX2
Linear
CO2
3
0
AX3
Trigonal planar
BCl3
2
1
AX2E
Bengkok
SO2
4
0
AX4
Tetrahedron
CH4
3
1
AX3E
Piramida trigonal
NH3
2
2
AX2E2
Planar bentuk V
H2O
5
0
AX5
Bipiramida trigonal
PCl5
4
1
AX4E
Bipiramida trigonal
SF4
3
2
AX3E2
Planar bentuk T
IF3
2
3
AX2E3
Linear
XeF2
6
0
AX6
Oktahedron
SF6
5
1
AX5E
Piramida sisiempat
IF5
4
2
AX4E2
Sisiempat datar
XeF4

Dengan menggunakan teori VSEPR maka kita dapat meramalkan bentuk geometri suatu molekul. Dalam artikel ini maka akan di contohkan menentukan bentuk geometri molekul XeF2, XeF4, dan XeF6. Diantara molekul-molekul tersebut ada yang memiliki pasangan elektron bebas dan ada yang tidak, jadi molekul-molekul tersebut adalah contoh yang bagus untuk lebih memahami teori VSEPR.
Pertama kita harus mementukan struktur lewis masing-masing molekul. Xe memiliki jumlah elektron valensi 8 sedangkan F elektron valensinya adalah 7.(lihat gambar dibawah)


Struktur Lewis XeF2 seperti gambar sebelah kiri, dua elektron Xe masing-masing diapakai untuk berikatan secara kovalen dengan 2 atom F sehingga meninggalkan 3 pasangan elektron bebas pada atom pusat Xe. Hal yang sama terjadi pada molekul XeF4 dimana 4 elektron Xe dipakai untuk berikatan dengan 4 elektron dari 4 atom F, sehingga meninggalkan 2 pasangan elektron bebas pada atom pusat Xe.

Lihat gambar diatas XeF2 memiliki 2 pasangan elekktron terikat (PET) dan 3 pasangan elektron bebas (PEB) jadi total ada 5 pasangan elektron yang terdapat pada XeF2, hal ini menandakan bahwa geometri molekul atau kerangka dasar molekul XeF2 adalah trigonal bipiramid. Karena terdapat 3 PEB maka PEB ini masing masing akan menempati posisi ekuatorial pada kerangka trigonal bipiramid, sedangkan PET akan menempati posisi aksial yaitu pada bagian atas dan bawah. Posisi inilah posisi yang stabil apabila terdapat atom dengan 2 PET dan 3 PEB sehingga menghasilkan bentuk molekul linear. Jadi bentul molekul XeF2 adalah linier.(lihat gambar dibawah).

Lihat gambar strutur lewis XeF4 memiliki 4 pasangan elekktron terikat (PET) dan 2 pasangan elektron bebas (PEB) jadi total ada 6 pasangan elektron yang terdapat pada XeF4, hal ini menandakan bahwa geometri molekul atau kerangka dasar molekul XeF4 adalah oktahedral. Karena terdapat 2 PEB maka PEB ini masing masing akan menempati posisi aksial pada kerangka oktahedral, sedangkan PET akan menempati posisi ekuatorial. Posisi inilah posisi yang stabil apabila terdapat atom dengan 4 PET dan 2 PEB sehingga menghasilkan bentuk molekul yang disebut segiempat planar. Jadi bentul molekul XeF2 adalah segiempat planar.(lihat gambar
dibawah).

Bentuk molekul akan sama dengan susunan ruang elektron yang ada pada atom pusat jika tidak pasangan elektron bebas.
Perhatikan gambar berbagai bentuk molekul berikut ini !
X : atom pusat
E : pasangan elektron bebas







Sumber : Wijayanti

Bentuk Molekul (A = atom pusat, X = pasangan elektron ikatan, E = pasangan elektron bebas) gambar dari http://www.chemmybear.com/shapes.html
AX6 AX5 AX4
AX3 AX2 AX5E
0—0
AX4E AX3E AX2E
AXE AX4E2
0—0
AX3E2 AX2E2 AXE2
0–0linear
AX3E3 AX2E3 AXE3
bentuk “T” 0–0 linear
AX2E4 AX4E AXE5
linear linear linear

Sumber : http://www.budies.info/unduh/bentuk-molekul